
Simulation of binary mixtures with the lattice Boltzman method

S. Arcidiacono* and J. Mantzaras†

Paul Scherrer Institute, Combustion Research, CH-5232 Villigen PSI, Switzerland

S. Ansumali‡

Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore 639798

I. V. Karlin,§ C. Frouzakis,� and K. B. Boulouchos¶

ETH-Zürich, Institute of Energy Technology, CH-8092 Zürich, Switzerland
�Received 12 May 2006; revised manuscript received 28 September 2006; published 22 November 2006�

A lattice Boltzman model for the simulation of binary mixtures is presented. Contrary to previous models,
the present formulation is able to simulate mixtures with different Schmidt numbers and arbitrary molecular
mass ratio of the components. In the hydrodynamic limit, the Navier-Stokes and the Stefan-Maxwell binary
diffusion equations are recovered. The model is used for the simulation of binary diffusion and mixing layers.
The results are found to be in good agreement with a derived similarity solution and with the predictions of a
transient spectral element code.
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I. INTRODUCTION

Mixing is an important process in many practical applica-
tions such as chemical reactions, pollutant dispersion, diffu-
sion in porous media, etc. Traditionally, mass and momen-
tum transfer are modeled using the continuum assumption.
However, as the Knudsen number Kn increases and the char-
acteristic hydrodynamic length becomes comparable to the
mean free path of the gases, the continuum assumption
breaks down and the use of kinetic theory is required. Recent
successes of kinetic algorithms like the lattice Boltzman
method �1–8� have shown that the use of kinetic theory may
be beneficial in the continuum domain as well. It seems natu-
ral, therefore, to extend the LB approach to mixtures. Indeed,
recently some LB models have been proposed for mixtures
�for a recent review, see Ref. �9��. Such attempts were based
either on a passive scalar model, or on direct discretization of
BGK-type models derived from the continuous kinetic
theory. Most of those models satisfy neither the H-theorem
nor the indifferentiability principle, i.e. they do not reduce to
the single-component BGK fluid when the species become
mechanically equivalent �see, e.g. Refs. �9,10��. Further-
more, the existing lattice Boltzman models for mixtures face
severe numerical instabilities at large molecular mass ratios
�11�.

An extended formulation of the LB model for binary mix-
tures initially introduced in Ref. �12� is presented in this
paper. The model ensures: thermodynamic consistency �the
H-theorem is satisfied� �13,14�, the indifferentiability prin-
ciple, the recovering of the Navier-Stokes and the Stefan-

Maxwell diffusion equations, a straightforward generaliza-
tion to a multiple species formulation, and the capability to
simulate large molecular mass ratios. As an example of
model flexibility, results are presented for the interdiffusion
of two species A and B with a molecular mass ratio mB /mA
=500, followed by a demanding dynamic simulation �mixing
layer� that is further compared with a similarity solution,
derived for the purposes of this work, and with the predic-
tions of a spectral element code that solves for the Navier-
Stokes �NS� and species conservation equations.

The model is described in detail in Secs. II–IV. Section V
provides the numerical implementation of the model. In Sec.
VI two different applications are considered and the results
from the LB code are compared either with analytical solu-
tions or with predictions of a continuum code. Conclusions
are reported in Sec. VII.

II. MODEL

The discrete-velocity kinetic equation for each component
j=A, B of a binary mixture can be written as

�t f ji + cji���f ji = � ji �1�

where i=0, . . . ,N, with N number of the discrete lattice ve-
locities cji�, �= �x ,y ,z� and � ji is the collision term. In Eq.
�1� and subsequently, summation convention is applied to the
index of the spatial direction.

The basic concept of the proposed kinetic model is a rep-
resentation on the fast-slow decomposition of motions near
quasi-equilibrium states, as proposed in Ref. �14�. The relax-
ation to equilibrium is modeled as a two-step process, a
“fast” relaxation from the initial state f to the quasi-
equilibrium f*, and a “slow” motion from the quasi-
equilibrium state f* towards the equilibrium feq. This decom-
position is thermodynamically consistent since it ensures a
non-negative entropy production �14� �a proof for the present
model is provided in the Appendix�. Both motions can be
approximated by a BGK term �15� with the condition �2
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��1, where �1 and �2 are the relaxation times from f to f*

and from f* to feq, respectively. Under these assumptions, the
collision integral � ji can be expressed as

� ji =
1

�1
�f ji

* − f ji� +
1

�2
�f ji

eq − f ji
* � . �2�

By definition, the moments of each component j are

� j = �
i

N

f ji, Jj� = �
i

N

f jicji�,

Pj�� = �
i

N

f jicji�cji�, Qj��� = �
i

N

f jicji�cji�cji�, �3�

where � j, Jj�, Pj��, and Qj��� are the density, the momen-
tum, the pressure tensor, and the third-order moment of com-
ponent j, respectively.

As usual in the entropic LB approach, the H-function is
defined according to:

H = �
j

A,B

�
i

N

f ji ln
f ji

Wi
, �4�

where Wi are weights associated to the corresponding dis-
crete lattice velocities �5�. In the present study the D2Q9
velocity model is implemented, and the discrete lattice ve-
locities vectors are

cji =	
�0,0� i = 0,

cj
�cos�	�i − 1�
2

�,sin�	�i − 1�
2

� i = 1 to 4

cj
�2
�cos�	�2i − 9�

4
�,sin�	�2i − 9�

4
� i = 5 to 8.� . �5�

The magnitudes of the discrete lattice velocities, cj, are re-
lated to the speed of sound csj =�kBT0 /mj of each component
as cj =�3csj, where mj is the molecular weight of component
j, kB is the Boltzman constant, and T0 is a reference tempera-
ture. The corresponding weight vector is

Wi =	
4

9
if i = 0,

1

9
if i = 1 to 4,

1

36
if i = 5 to 8.

�6�

The equilibrium distribution function is evaluated by mini-
mizing Eq. �4� under the constraint of conservation of the
density of each species �� j�, and of the total mixture momen-
tum J=JA+JB �the energy conservation is not relevant in the
present isothermal model�:

� j = �
i

N

f ji, J� = �
j

A,B

�
i

N

f jicji�. �7�

The result of the minimization problem can be directly ex-
tracted from the equilibrium of a single-component fluid �5�:

f ji
eq�� j,U� = � jWi�

�=1

d �2cj − �cj
2 + 3U�

2

cj
�


�2U� + �cj
2 + 3U�

2

cj − U�

�cji�/cj

, �8�

where d is the spatial dimensionality of the system, U�

=J� /� is the velocity of the mixture in the � direction, and
�=�A+�B.

The quasi-equilibrium distribution function f j
* of each

component j is obtained by minimizing the H-function under
the same constraints of the conserved variables and some
additional linear constraints �quasi-conserved variables� that
are considered to approach the equilibrium slowly, while all
other moments are assumed to equilibrate faster. The quasi-
equilibrium used in the present implementation is obtained
by minimizing the H-function using as a linear constraint the
difference between the momentum J� of the mixture and the
momentum Jj� of component j. The constraints for this case
can be written as

� j = �
i

N

f ji,

J� = �
j

A,B

�
i

N

f jicji�,
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J� − Jj� = �
j

A,B

�
i

N

f jicji� − �
i

N

f jicji�, �9�

which is equivalent to the set of constraints

� j = �
i

N

f ji,

Jj� = �
i

N

f jicji�. �10�

It can be easily shown that the minimization problem is the
same as in the one-component case, and that the quasi-
equilibrium populations are obtained by substituting in Eq.
�8� the velocity U j =J j /� j of each component

f ji
* �� j,U j� = f ji

eq�� j,U j� . �11�

As shown below, the choice of this quasi-equilibrium leads
to a limitation on the Schmidt number Sc=� /DAB, where � is
the kinematic viscosity and DAB is the binary diffusion coef-
ficient: Sc�Sc*, where Sc* is a reference Schmidt number to
be defined at the end of Sec. IV. Extension of the model to
ScSc* will be briefly discussed in the same section. The
standard BGK model for a single-component fluid is ob-
tained from Eqs. �2� and �11� when �1=�2 and mA=mB �the
indifferentiability principle is recovered�.

III. HYDRODYNAMICS

In order to relate the momentum Jj� of component j in the
� direction to the total momentum J� of the mixture, a dif-
fusion flux V� is defined as

V� = mAB� JA�

�A
−

JB�

�B
� , �12�

with mAB=�A�B / ��A+�B� denoting the reduced mass.
Using the definition of Eq. �12�:

JA� =
�A

�
J� + V�,

JB� =
�B

�
J� − V�. �13�

Multiplying Eqs. �1� by �1,cji� ,cji�cji��, summing up and
further using Eqs. �3� and �13�, the moment transport equa-
tions for each component j are recovered in the hydrody-
namic limit.

Density:

�t� j + ���� j

�
J� ± V�� = 0. �14�

Momentum:

�tJj� + ��Pj�� = �
1

�2
V�. �15�

Pressure:

�tPj�� + ��Qj��� =
1

�1
�Pj��

* �� j,J j� − Pj��� +
1

�2
�Pj��

eq �� j,J�

− Pj��
* �� j,J j�� . �16�

Pj��
* �� j ,J j� is the partial pressure of component j at quasi-

equilibrium and Pj��
eq �� j ,J� is the same quantity at equilib-

rium. The upper sign in Eqs. �14� and �15� corresponds to
component A, while the lower to component B.

In this formulation, since there are no chemical reactions,
only the density of each component is conserved, while the
momentum and the pressure tensor are nonconserved mo-
ments. In the following derivation only the equations perti-
nent to the mixture will be considered. The transport equa-
tions for the mixture density, the density difference, and the
mixture momentum are obtained by adding or subtracting the
corresponding species equations,

�t� + ��J� = 0,

�t��A − �B� + �����A − �B�
J�

�
+ 2V�� = 0,

�tJ� + ���PA�� + PB��� = 0. �17�

Equations �17� represent the conserved moments of the mix-
ture. It is noted that the total momentum of the mixture is
conserved by the present model. The nonconserved moments
are obtained by adding the pressure Eq . �16� and by sub-
tracting the momentum Eqs. �15�:

�tP�� + ��Q��� =
1

�1
�P��

* − P��� +
1

�2
�P��

eq − P��
* � ,

�t���A − �B�
J�

�
+ 2V�� + ���PA�� − PB��� = −

2

�2
V�,

�18�

where P��= PA��+ PB��, P��
* = PA��

* + PB��
* , and P��

eq = PA��
eq

+ PB��
eq .

IV. CHAPMAN-ENSKOG EXPANSION

The system of Eqs. �18� together with Eqs. �17� allows for
the evaluation of �1 and �2 in the hydrodynamic limit. The
standard procedure �Chapman-Enskog� is to expand all non-
conserved variables, distribution functions, and time deriva-
tives in Knudsen number series around the equilibrium:

f ji = f ji
eq�� j,U� + Kn f ji

�1� + Kn2 f ji
�2� + ¯ ,

�t = �t
�0� + Kn �t

�1� + Kn2 �t
�2� + ¯ ,

V� = V�
eq + Kn V�

�1� + Kn2 V�
�2� + ¯ ,

Pj�� = Pj��
eq �� j,J� + Kn Pj��

�1� + Kn2 Pj��
�2� + ¯ ,

P�� = P��
eq ��A,�B,J� + Kn P��

�1� + Kn2 P��
�2� + ¯ . �19�

The diffusion flux V�
eq is zero, since at equilibrium the two

components have the same velocity. The expansion is carried
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out with the further assumption that �1 and �2 are of O�Kn�.
For the present model, the equilibrium pressure tensor and
third-order moment, neglecting the cubic terms in J, are

P��
eq ��A,�B,J� = nkBT0��� +

J�J�

�
, �20�

Q���
eq ��A,�B,J� = nkBT0� J�

�
��� +

J�

�
��� +

J�

�
���� + O�J3� ,

�21�

where n=nA+nB is the total number of moles per unit vol-
ume, and nj =� j /mj is the number of moles of component j
per unit volume.

The pressure of component j at the quasi-equilibrium
Pj��

* �� j ,J j� can be expressed as a function of the pressure at
the equilibrium Pj��

eq �� j ,J� through the expansion defined in
Eqs. �19�. Considering only the first-order terms of the ex-
pansion and using Eqs. �13�:

PA��
* ��A,JA� = PA��

eq ��A,J� + Kn�1

�
J�V�

�1� +
1

�
J�V�

�1�� ,

PB��
* ��B,JB� = PB��

eq ��B,J� − Kn�1

�
J�V�

�1� +
1

�
J�V�

�1�� .

�22�

The above equations also imply that PA��
* + PB��

* = PA��
eq

+ PB��
eq .
The zeroth-order time derivatives for the conserved mo-

ments become

�t
�0�� = − ��J�,

�t
�0�J� = − ���nkBT0��� +

J�J�

�
� ,

�t
�0���A − �B� = − �����A − �B�

J�

�
� . �23�

Using Eqs. �19� to �23�, the first-order expansions for the
nonconserved moments are obtained from Eqs. �18�

�t
�0�P��

eq + ��Q���
eq = −

1

�1
P��

�1� ,

�t
�0����A − �B�

J�

�
� + ����nA − nB�kBT0����

+ �����A − �B�
J�J�

�2 � = −
2

�2
V�

�1�. �24�

A. Viscosity

The first of Eqs. �24� allows for the determination of the
mixture viscosity at the hydrodynamic limit. Since P��

eq is a
function of �A ,�B, and J:

�tP��
eq = ��t�A�

�P��
eq

��A
+ ��t�B�

�P��
eq

��B
+ ��tJ��

�P��
eq

�J�

. �25�

Taking the derivatives with respect to �A ,�B ,J�, and �
�space� of Eq. �20�:

�P��
eq

��A
=

1

mA
kBT0��� −

J�J�

�2 ,

�P��
eq

��B
=

1

mB
kBT0��� −

J�J�

�2 ,

�P��
eq

�J�

=
J�

�
��� +

J�

�
���,

��P��
eq = kBT0�����n +

J�

�
��J� +

J�

�
��J� −

J�J�

�2 ��� . �26�

Substituting Eqs. �26� in Eq. �25�, it is possible to express the
time derivative of P��

eq , neglecting again the third-order terms
in J, as

�t
�0�P��

eq = − ���n

�
J��kBT0��� − kBT0��n� J�

�
��� +

J�

�
����

+ O�J3� . �27�

After some simplifications, the left-hand side of the first of
Eqs. �24� becomes

�t
�0�P��

eq + ��Q���
eq = ���

J�

�
+ ��

J�

�
�nkBT0, �28�

and equating with the corresponding right-hand side

���

J�

�
+ ��

J�

�
�nkBT0 =

1

�1
P��

�1� . �29�

The pressure is obtained by adding the equilibrium and the
nonequilibrium contributions, P��= P��

eq +KnP��
�1�. Substitut-

ing into the momentum equation �third of Eqs. �17��

�tJ� + ��P + ��� J�J�

�
− �1nkBT0���

J�

�
+ ��

J�

�
�� = 0,

�30�

where P=nkBT0 is the static pressure of the system. By com-
paring it with the NS equations,

�tJ� + ��P + ��� J�J�

�
− ����

J�

�
+ ��

J�

�
�� = 0, �31�

the shear viscosity coefficient is finally recovered,

� = n�1kBT0. �32�

B. Diffusion coefficient

The second of Eqs. �24� allows for the extraction of the
diffusion coefficient at the hydrodynamic limit. Using Eqs.
�23� to eliminate the time derivatives in Eqs. �24�, and after
some rearrangements,
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V�
�1� = �2��A

�
��P − ��nAkBT0� . �33�

Noting that

��nA = n���

nA

n
+

nA

n2 ��n� , �34�

the diffusion velocity can be written as

V�
�1� = �2�YA��P − P���XA +

XA

P
��P��

= �2P��YA − XA�
��P

P
− ��XA� , �35�

where YA=�A /� and XA=nA /n are the mass and the mole
fractions of component A, respectively. Rearranging Eq.
�35�, the molar fraction of species A reads as

��XA = −
V�

�1�

�2P
+ �YA − XA�

��P

P
, �36�

and by comparing it with its macroscopic counterpart, the
Stefan-Maxwell diffusion equation �16�,

��XA =
XAXB

DAB
� JB�

�B
−

JA�

�A
� + �YA − XA�

��P

P
, �37�

the diffusion coefficient is recovered,

DAB = XAXB
P

mAB
�2. �38�

It is now possible to analyze the restrictions on the Schmidt
number,

Sc =
�

�DAB
=

�1

�2

mAB

XAXB

1

�
, �39�

imposed by the present model. Considering that by construc-
tion �1��2, the Schmidt number has to obey locally the fol-
lowing inequality:

Sc =
�

�DAB
�

YAYB

XAXB
. �40�

As anticipated, this limitation stems from the fast-slow mo-
tion decomposition and the set of constraints used to maxi-
mize the entropy function in order to evaluate the quasi-
equilibrium distribution function f*�� j ,U j�. Using as quasi-
conserved variable the stress tensor Pj�� of component j to
evaluate the quasi-equilibrium, a set of constraints for the
minimization of the H-function can be obtained:

� j = �
i

N

f ji,

J� = �
j

A,B

�
i

N

f jicji�,

Pj�� = �
i

N

f jicji�cji�. �41�

It is easy to show that by repeating the Chapman-Enskog
expansion for this quasi-equilibrium f**�� j ,U , Pj���, the fol-
lowing is obtained:

Sc �
YAYB

XAXB
. �42�

The solution to this minimization problem and the resulting
quasi-equilibrium will be addressed in a future publication.

V. NUMERICAL IMPLEMENTATION

A. Time integration

In the lattice Boltzman scheme, Eqs. �1� are discretized in
time by applying the implicit trapezoidal rule between time t
and t+�t:

f ji�x + cji�t,t + �t� = f ji�x,t� +
�t

2
�� ji„f�x,t�… + � ji„f�x

+ cji�t,t + �t�…� + O��t3� , �43�

with � ji(f�x , t�) the collision integral at time t. This scheme
is rendered explicit by introducing a local transformation
through the auxiliary functions gji such that

gji�x,t� = f ji�x,t� −
�t

2
� ji„f�x,t�… . �44�

By substituting in Eq. �43� and using Eq. �2�,

gji�x + cji�t,t + �t� = gji�x,t� − �1�gji�x,t� − f*�� j,U j��

− �2�f ji�� j,U j� − f ji
eq�� j,U�� , �45�

with �1=2�t / �2�1+�t� and �2=�1�1 /�2. In this formulation
gji�t� is a function of both f ji

* �t , f� and f ji
eq�t , f�. Evaluating the

moments of gji�t� from Eq. �44� for the collision model under
consideration yields

� j�f� = � j�g� ,

Jj��f� =
�2�2/�t�Jj��g� + � j/�J��g�

1 + �2�2/�t�
,

J��f� = J��g� . �46�

The momentum Jj� of each individual species differs in the
two distribution functions. This happens because the species
momentum is not conserved by the collision term �a general
feature of collision models for mixtures�. The difference be-
tween Jj��f� and Jj��g� vanishes when the two masses are
the same �mA=mB�, but becomes non-negligible when the
mass ratio becomes large. This effect of discreteness, which
leads to a redefinition of the nonconserved moments, was
overlooked in previous works and led to lattice Boltzman
methods that were first-order accurate in time �11,17�. The
present discretization scheme allows for the transformation
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the initial implicit time integration problem in f into an ex-
plicit equation in g. It is clarified that in order to evaluate
feq�f� and f*�f�, the moments must be computed using Eqs.
�48�. Moreover, it is emphasized that the time integration
scheme is second-order accurate.

B. Space discretization

The time step is defined as: dt=dx /c, where dx is the
lattice spacing, and c the lattice velocity. Since in a binary
mixture the masses of the two components are generally dis-
similar, the speed of sound of the two components will be
different. In order to have the same time step for both com-
ponents, two different lattice grids �one for each species�
have to be used, and the corresponding lattice spacing ratio is
related to the ratio of the sound speeds of the two compo-
nents, i.e., to the inverse of the square root of the molecular
weight ratio

dxA

dxB
=

cAs

cBs
=�mB

mA
. �47�

This implies that the heavy component populations will re-
side on a finer grid or, equivalently, that the light component
in one time step is diffusing faster than the heavier �Gra-
ham’s effusion law�. In a first implementation of the present
model �12�, a spacial discretization of Eqs. �45� on two dif-
ferent grids was used. Such a procedure has the advantage of
keeping the streaming/advection step, resulting in a fast LB
algorithm, but imposes restrictions on the molecular mass
ratio, whose square root has to be a rational number since dxj
are integers �see Eq. �47��. Moreover, this implementation
requires very fine grids when computing systems with a large
mass ratio. In order to generalize the approach to any mass
ratio and decrease the resolution requirements, an interpola-
tion scheme using only one grid is implemented herein, as
suggested in Refs. �11,18�.

VI. MODEL APPLICATIONS

The model was tested by simulating the time evolution of
two classical diffusion problems: the interdiffusion of two
components in a binary mixture subjected to an initial con-
centration gradient and the mixing of two flow streams hav-
ing different inlet velocities and species concentrations.

A. Binary diffusion

In the binary diffusion case, the mixture consists of two
different gases having a molecular mass ratio mB /mA=500
with an initial mole fraction concentration profile along the
axial direction x given by the step function:

XA = 90 % , XB = 10 % if x � 0,

XA = 10 % , XB = 90 % if x � 0. �48�

It is noted that the use of step functions is a severe test for
the code compared to the use of smooth profiles. The bound-
ary conditions are periodic on the horizontal boundaries,
while on the vertical boundaries �x= ±L, L being the length

of the computational domain� the missing incoming popula-
tions are replaced by the quasi-equilibrium populations
f*(� j�t−1� ,0), �19� with � j�t−1� the density of the compo-
nent j evaluated at the previous time step. The grid resolution
is 500
100 lattice nodes along the diffusion direction x. The
analytical time evolution for the mole fraction of component
j is �20�

Xj = �1

2
+

�Xj

2
erf� x

�4Dt
�� , �49�

where �X is the initial mole fraction difference, and D is the
diffusion coefficient. Figure 1 shows excellent agreement be-
tween the LB calculations and the analytical solution of Eq.
�49�. Despite the large mass ratio, the agreement persists for
long-time integration �80 000 time steps�, indicating that no
numerical diffusion is introduced by the interpolation
scheme �the relative error is below 1%�. For the same mass
ratio, it is possible to obtain a larger initial concentration
difference �XA=99%, XB=1% and XA=1%, XB=99%� with a
corresponding density ratio of ca. 60, but in this case an
initial smooth profile was necessary for numerical stability
reasons.

B. Laminar mixing layer

The model is also tested on a dynamic diffusion process,
the free-shear mixing of two initially separated binary fluid
layers with velocities U1 and U2, and mass fractions YA1 and
YA2, respectively �see Fig. 2�. To the authors’ knowledge
there is only one work that tested a LB model with such a
flow �21�, in which the thickness growth of an unsteady mix-
ing layer was compared with the experiments of Brown and
Roshko �22�. Herein, this method is not followed since such
a comparison involves the evaluation of the momentum
thickness obtained by visual observation of the density pro-

FIG. 1. Diffusion of a binary mixture, molar concentration of
component A. Initial molar concentration 90%A−10%B for x�0
and 10%A−90%B for x0, mass ratio mB /mA=500, and D
=0.03 in LB units. Symbols: LB predictions at time step 5000
�lower triangles�; 10 000 �upper triangles�; 20 000 �circles�; 40 000
�squares�, and 80 000 �diamonds�. Continuous lines: corresponding
analytical solution �Eq. �49��.
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files leading to errors that can affect the assessment of the
model accuracy. On the contrary, it is preferable to compare
LB simulations with the predictions of a transient spectral
element code that solves the continuum NS and species con-
servation equations and, in addition, with a similarity solu-
tion for the steady mixing layer. The comparison with a tran-
sient code is necessary to ensure that a steady solution is
truly attainable. Linear stability analysis under the parallel
flow assumption predicts that the mixing layer flow is un-
stable at any Reynolds number, Re, where Re=U1� /�1 and
����1x /U1�1/2 is the boundary layer thickness �see for ex-
ample Ref. �23��. Nevertheless, since this is a convectively
unstable problem �24�, i.e., disturbances are convected away
downstream as they amplify in space, eventually leaving the
basic flow undisturbed, the propagation of instabilities can be
inhibited by simulating a flow at low Re number and by
using a fine grid resolution in order to suppress the numerical
noise that triggers instabilities. In such a way, a steady flow
configuration can be obtained for the mixing layer.

The continuum conservation equations of total mass, mo-
mentum, and species are solved with a parallel code that uses
spectral elements for the discretization of the spatial deriva-
tives. The temporal discretization is based on a second-order
mixed explicit/implicit operator splitting formulation �25�.
The MPI-based parallel code runs with good scalability on a
number of different platforms �26�. The computational do-
main was discretized with 1824 spectral elements and grid
independence of the solution was ensured by using interpo-
lating polynomial orders ranging from 4 to 10 in each spatial
direction. Dirichlet boundary conditions are imposed on the
inflow velocity, and flux boundary conditions for the species.
At the outlet, zero Neumann boundary conditions are used
for both the velocity and the species. Finally, on the lower
and upper boundary, free-slip boundary conditions are en-
forced for the velocity and zero flux for the species.

1. Similarity solution

A similarity solution is derived herein, considering �in
accordance to the LB formulation� constant dynamic viscos-
ity � and binary diffusion coefficient D. Invoking the bound-
ary layer approximation �16,20�, the momentum and species
conservation equations are

�u
�u

�x
+ �v

�u

�y
= �

�2u

�y2 , �u
�YA

�x
+ �v

�YA

�y
=

�

�y
��D

�YA

�y
� ,

�50�
with boundary conditions

y = � u = U1,YA = YA1,

y = − � u = U2,YA = YA2. �51�

The similarity solution is found by introducing the stream
function � such that

�u = �1
��

�y
, �v = − �1

��

�x
. �52�

A set of dependent and independent variables is defined

f =
�

�2�1U1x
,

cA =
YA − YA1

YA2 − YA1
,

��x,y� =� U1

2�1x
� �

�1
dy . �53�

Using Eqs. �52� and �53�, Eqs. �50� can be rewritten as

� �

�1
� f� + f f� + f�

�

��
� �

�1
� = 0,

�2cA

��2 � �

�1
�2

+ Sc1f
�cA

��
+

�cA

��

�

��
� �

�1
�2

= 0, �54�

where Sc1=� /�1D��1 /�1D1. The boundary conditions are

� = � , f� = 1,cA = 0,

� = − � , f� =
U2

U1
,cA = 1,

� = 0, f = 0. �55�

One more equation is needed to evaluate � /�1 as a function
of the relative concentration cA in order to couple the mo-
mentum and the species equations. Following the previous
formalism, the density can be expressed as

� = �A + �B = mAnA + mBnB

= n�mAXA + mBXB�

= n��mA − mB�XA + mB� . �56�

Similarly for the reference stream

�1 = n1��mA − mB�XA1 + mB� . �57�

Since in the boundary layer approximation

�P

�y
= 0, �58�

and P=nkBT, n�n1 must hold at any y, such that

FIG. 2. Free-shear mixing. LB
simulation: vector plot and con-
centration isocontours. Mass ratio
mB /mA=20 and Sc1=1.15.
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�

�1
=

�mA − mB�XA + mB

�mA − mB�XA1 + mB
. �59�

Finally, the mole and the mass fractions are related according
to

XA =
YA

mA� YA

mA

+ �1 − YA

mB

�� . �60�

The set of Eqs. �54�, �59�, and �60� subject to the boundary
conditions of Eqs. �55� provides a similarity solution. The
solution is obtained numerically with a finite-difference it-
erative scheme, using sufficiently long integration domains
��= ±24�.

2. Comparison

The LB computational domain is a grid of 400
2000
nodes �see Fig. 2�. Free-slip boundary conditions are applied
at the horizontal boundaries. The similarity boundary condi-
tions, which were imposed under the assumption of infinite
domain, cannot be used both in the LB and spectral element

code, since they are creating a transverse flow that renders
computations unstable. At the outlet the missing incoming
populations are replaced by the extrapolated quasi-
equilibrium populations from the previous node, while at the
inlet the missing incoming populations are replaced by the
equilibrium populations feq corresponding to the imposed in-
let conditions for concentration and velocity profiles:

XA = 90 % , XB = 10 % , U = U1 if y 
Ly

2
,

XA = 80 % , XB = 20 % , U = U2 if y �
Ly

2
�61�

where U2= 2
3U1 and Ly is the total number of nodes in the

transverse direction. The simulations are performed for a
mass ratio of mB /mA=20. The concentrations are chosen in
order to satisfy the restrictions of Eq. �40� and, at the same
time, to have a large viscosity � �low Re number� by keeping
the concentration of the heavy component small. The result-
ing Schmidt number was in the range 1.15�=Sc1�Sc
0.69�=Sc2�. The results obtained with the LB model, the
spectral element solution of the continuum equations, and the
similarity solution are compared in Fig. 3. It is emphasized
that the LB and spectral element solution points in Fig. 3
pertain to various axial positions. The three results are in
excellent agreement regarding both the axial velocity and the
concentration profiles. The very good agreement is also
maintained for the same mass ratio, when the Sc range is
decreased to 0.69�=Sc1�Sc0.41�=Sc2�, and when chang-
ing the mass ratio to mB /mA=16 with 1.33�=Sc1�Sc
0.833�=Sc2� �for clarity those results are not shown in
Fig. 3�.

A further assessment of the model accuracy and its imple-
mentation is performed by comparing the transverse velocity
v. Since the magnitude of v is considerably smaller than the
reference velocity U1 �by a factor of 10−3�, its value is very
sensitive to the applied boundary conditions. The simulation

FIG. 3. Free-shear mixing. Comparison between the LB
�circles�, the spectral element code predictions �crosses�, and the
similarity solution �continuous lines� for: mB /mA=20, Sc1

=1.15,Sc2=0.69. �a� Dimensionless velocity profiles. �b� Concen-
tration profiles.

FIG. 4. Free-shear mixing. Predictions of the transverse velocity
at different sections for mB /mA=20, Sc1=1.15, and Sc2=0.69. Con-
tinuous line: LB. Dashed line: spectral element code predictions.
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has to be performed using smooth profiles �hyperbolic tan-
gent� for the axial velocity and concentration at the inlet in
order to suppress any subsequent instability that can affect
the transverse velocity. Figure 4 shows comparisons of the
transverse velocity at different axial positions. The agree-
ment is quite good far from the inlet �the error in the predic-
tion of the maximum is around 6% for x /Ly =4�. Close to the
inlet the differences in the applied boundary conditions result
in larger discrepancies �ca. 25% at x /Ly =0.5�.

The developed model applies not only to steady, but also
to unsteady flows. As an example of the capacity of the LB
code to simulate nonsteady flows at higher Re numbers, the
previous calculation with mB /mA=16 and 1.33�=Sc1�Sc
0.833�=Sc2� is repeated by decreasing the dynamic viscos-
ity � from 5
10−3 to 5
10−4. The concentration profiles
are presented in Fig. 5. Details on the jet instabilities and
comparison with the spectral element code, however, are out-
side the scope of the present work.

VII. CONCLUSIONS

The LB model based on the quasi-equilibrium formula-
tion presented in this paper allows for the simulation of bi-
nary mixtures with any molecular mass ratio and a wide
range of Schmidt numbers. It has been shown that both the
Navier-Stokes and the Stefan-Maxwell diffusion equations
are recovered in the hydrodynamic limit. The corresponding
viscosity and diffusion coefficients are related to the relax-
ation times towards the quasi-equilibrium, �1, and the equi-

librium, �2, by: �=n�1kBT0 and DAB=XAXBP /mAB�2. Despite
the simplicity of the presented model �its implementation on
top of the standard LBGK code is straightforward�, it is free
of the drawbacks of previous models, and is thermodynami-
cally consistent. Applications to binary diffusion and mixing
layers were presented. The LB predictions for a laminar flow
were in good agreement with the solution of the continuum
conservation equations obtained by a spectral element code
and with a similarity solution.
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APPENDIX: H-THEOREM

The lattice Boltzman equation for the binary mixture
reads as

�t f ij + cij���f ij = −
1

�1
�f ij − f ij

* � −
1

�2
�f ij

* − f ij
eq� . �A1�

By adding and subtracting to the right-hand side the term
�1/�2�f ij , j=A ,B:

�t f ij + cij���f ij = −
1

�2
�f ij − f i

eq� − � 1

�1
−

1

�2
��f ij − f ij

* � .

�A2�

For the present model, the H function is defined as

H = �
j

A,B

�
i

N

f ijln
f ij

Wi
, �A3�

where Wi are the weights defined in Eq. �6�. The H function
transport equation is obtained by multiplying Eqs. �A2� by
ln f ij /Wi, and summing up over i=1, . . . ,N, for both compo-
nents A and B,

�tH + ��JH� = −
1

�2
�

i

N

ln
f iA

Wi
�f iA − f iA

eq� − � 1

�1
−

1

�2
��

i

N

ln
f iA

Wi
�f iA − f iA

* � −
1

�2
�

i

N

ln
f iB

Wi
�f iB − f iB

eq� − � 1

�1
−

1

�2
��

i

N

ln
f iB

Wi
�f iB − f iB

* � ,

�A4�

where

JH� = �
j

A,B

�
i

N

cij�f ijln
f ij

Wi
�A5�

is the H-flux. Using the conservation laws,

�
i

N

�f ij − f ij
eq� = 0, �

i

N

�f ij − f ij
* � = 0,

FIG. 5. Free-shear mixing. LB simulation. Instantaneous con-
centration profile for the nonsteady case, mB /mA=16, Sc1=1.33,
and Sc2=0.833.
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�
j

A,B

�
i

N

�f ij − f ij
eq�cij� = 0, �

i

N

�f ij − f ij
* �cij� = 0, �A6�

and considering that ln�f ij
eq�=A+Bcij and ln�f ij

* �=C+Dcij, where A, B, C, and D are Lagrange multipliers,

�
i

N

�f ij − f ij
eq�ln�f ij

eq� = 0,

�
i

N

�f ij − f ij
* �ln�f ij

* � = 0. �A7�

By adding the last two terms to Eq. �A4� for each component

�tH + ��JH = −
1

�2
�

i

N

ln
f iA

f iA
eq�f iA − f iA

eq� − � 1

�1
−

1

�2
��

i

N

ln
f iA

f iA
* �f iA − f iA

* � −
1

�2
�

i

N

ln
f iB

f iB
eq�f iB − f iB

eq� − � 1

�1
−

1

�2
��

i

N

ln
f iB

f iB
* �f iB − f iB

* � .

�A8�

Considering that the quantities ln f ij / f ij
eq�f ij − f ij

eq� and ln f ij / f ij
* �f ij − f ij

* � are always non-negative-definite, a sufficient condition
to have a non-negative-definite entropy production E=−kBH is �2��10, and the H theorem is obtained.
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